Abstract
AbstractGiven $$d,s \in {\mathbb {N}}$$
d
,
s
∈
N
, a finite set $$A \subseteq {\mathbb {Z}}$$
A
⊆
Z
and polynomials $$\varphi _1, \dots , \varphi _{s} \in {\mathbb {Z}}[x]$$
φ
1
,
⋯
,
φ
s
∈
Z
[
x
]
such that $$1 \le \deg \varphi _i \le d$$
1
≤
deg
φ
i
≤
d
for every $$1 \le i \le s$$
1
≤
i
≤
s
, we prove that $$\begin{aligned} |A^{(s)}| + |\varphi _1(A) + \cdots + \varphi _s(A) | \gg _{s,d} |A|^{\eta _s}, \end{aligned}$$
|
A
(
s
)
|
+
|
φ
1
(
A
)
+
⋯
+
φ
s
(
A
)
|
≫
s
,
d
|
A
|
η
s
,
for some $$\eta _s \gg _{d} \log s / \log \log s$$
η
s
≫
d
log
s
/
log
log
s
. Moreover if $$\varphi _i(0) \ne 0$$
φ
i
(
0
)
≠
0
for every $$1 \le i \le s$$
1
≤
i
≤
s
, then $$\begin{aligned} |A^{(s)}| + |\varphi _1(A) \dots \varphi _s(A) | \gg _{s,d} |A|^{\eta _s}. \end{aligned}$$
|
A
(
s
)
|
+
|
φ
1
(
A
)
⋯
φ
s
(
A
)
|
≫
s
,
d
|
A
|
η
s
.
These generalise and strengthen previous results of Bourgain–Chang, Pálvölgyi–Zhelezov and Hanson–Roche-Newton–Zhelezov. We derive these estimates by proving the corresponding low-energy decompositions. The latter furnish further applications to various problems of a sum-product flavour, including questions concerning large additive and multiplicative Sidon sets in arbitrary sets of integers.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Balog, A., Wooley, T.D.: A low-energy decomposition theorem. Q. J. Math. 68(1), 207–226 (2017)
2. Bourgain, J., Chang, M.C.: On the size of k-fold sum and product sets of integers. J. Amer. Math. Soc. 17(2), 473–497 (2004)
3. Bukh, B., Tsimerman, J.: Sum-product estimates for rational functions. Proc. Lond. Math. Soc. (3) 104(1), 1–26 (2012)
4. Chang, M.C.: The Erdős–Szemerédi problem on sum set and product set. Ann. Math. (2) 157(3), 939–957 (2003)
5. Cilleruelo, J.: New upper bounds for finite $$B_h$$ sequences. Adv. Math. 159(1), 1–17 (2001)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献