Moduli spaces of compact RCD(0,N)-structures

Author:

Mondino AndreaORCID,Navarro Dimitri

Abstract

AbstractThe goal of the paper is to set the foundations and prove some topological results about moduli spaces of non-smooth metric measure structures with non-negative Ricci curvature in a synthetic sense (via optimal transport) on a compact topological space; more precisely, we study moduli spaces of $${{\,\mathrm{\textrm{RCD}}\,}}(0,N)$$ RCD ( 0 , N ) -structures. First, we relate the convergence of $${{\,\mathrm{\textrm{RCD}}\,}}(0,N)$$ RCD ( 0 , N ) -structures on a space to the associated lifts’ equivariant convergence on the universal cover. Then we construct the Albanese and soul maps, which reflect how structures on the universal cover split, and we prove their continuity. Finally, we construct examples of moduli spaces of $${{\,\mathrm{\textrm{RCD}}\,}}(0,N)$$ RCD ( 0 , N ) -structures that have non-trivial rational homotopy groups.

Funder

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference40 articles.

1. Abraham, R., Delma, J.-F., Hoscheit, P.: A note on the Gromov–Hausdorff–Prokhorov distance between (locally) compact metric measure spaces. Electron. J. Probab. 18(14), 1–21 (2013)

2. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with -finite measure. Trans. Am. Math. Soc. 367, 4661–4701 (2015)

3. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014)

4. Ambrosio, L., Gigli, N., Savaré, G.: Bakry-émery curvature-dimension condition and riemannian Ricci curvature bounds. Ann. Probab. 43(1), 339–404 (2015)

5. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. Mem. Am. Math. Soc. 262(1270), v+121 (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3