Abstract
AbstractWe determine the behavior of automorphic Green functions along the boundary components of toroidal compactifications of orthogonal Shimura varieties. We use this analysis to define boundary components of special divisors and prove that the generating series of the resulting special divisors on a toroidal compactification is modular.
Funder
Deutsche Forschungsgemeinschaft
LOEWE Schwerpunkt USAG
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Ash, A., Mumford, D., Rapoport, M., Tai, Y.S.: Smooth Compactifications of Locally Symmetric Varieties, Lie Groups, History, Frontiers and Applications IV, Math. Sci. Press, Brookline, MA, iv+335pp (1975)
2. Baily, W.L., Borel, A.: Compactification of Arithmetic Quotients of Bounded Symmetric Domains. Ann. of Math. 84(3), 442–528 (1966)
3. Borcherds, R.E.: Automorphic Forms with Singularities on Grassmannians. Invent. Math. 132, 491–562 (1998)
4. Borcherds, R.E.: The Gross-Kohnen-Zagier Theorem in Higher Dimensions. Duke Math J. 97(2), 219–233 (1999), Correction: Duke Math J., 105(1), 183–184 (2000)
5. Bruinier, J.H.: Borcherds Products on $${\rm O}(2, l)$$ and Chern Classes of Heegner Divisors. Lecture Notes in Mathematics, vol. 1780. Springer-Verlag (2002)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献