Abstract
AbstractWe prove several statements about arithmetic hyperbolicity of certain blow-up varieties. As a corollary we obtain multiple examples of simply connected quasi-projective varieties that are pseudo-arithmetically hyperbolic. This generalizes results of Corvaja and Zannier obtained in dimension 2 to arbitrary dimension. The key input is an application of the Ru–Vojta’s strategy. We also obtain the analogue results for function fields and Nevanlinna theory with the goal to apply them in a future paper in the context of Campana’s conjectures.
Funder
Università degli Studi Roma Tre
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Autissier, P.: Géométries, points entiers et courbes entières. Ann. Sci. Éc. Norm. Supér. (4) 42(2), 221–239 (2009)
2. Barroero, F., Capuano, L., Turchet, A.: Geometric divisibility sequences on abelian and semiabelian varieties. https://arxiv.org/abs/2205.05562 (2022) (preprint)
3. Bogomolov, F., Tschinkel, Y.: Special elliptic fibrations. In: The Fano Conference, pp. 223–234. Univ. Torino, Turin (2004)
4. Borel, E.: Sur les zéros des fonctions entières. Acta Math. 20(1), 357–396 (1897)
5. Bugeaud, Y., Corvaja, P., Zannier, U.: An upper bound for the G.C.D. of $$a^n-1$$ and $$b^n-1$$. Math. Z. 243(1), 79–84 (2003)