Fractional Sobolev spaces on Riemannian manifolds

Author:

Caselli MicheleORCID,Florit-Simon Enric,Serra Joaquim

Abstract

AbstractThis article studies the canonical Hilbert energy $$H^{s/2}(M)$$ H s / 2 ( M ) on a Riemannian manifold for $$s\in (0,2)$$ s ( 0 , 2 ) , with particular focus on the case of closed manifolds. Several equivalent definitions for this energy and the fractional Laplacian on a manifold are given, and they are shown to be identical up to explicit multiplicative constants. Moreover, the precise behavior of the kernel associated with the singular integral definition of the fractional Laplacian is obtained through an in-depth study of the heat kernel on a Riemannian manifold. Furthermore, a monotonicity formula for stationary points of functionals of the type $${\mathcal {E}}(v)=[v]^2_{H^{s/2}(M)}+\int _M F(v) \, dV$$ E ( v ) = [ v ] H s / 2 ( M ) 2 + M F ( v ) d V , with $$F\ge 0$$ F 0 , is given, which includes in particular the case of nonlocal s-minimal surfaces. Finally, we prove some estimates for the Caffarelli–Silvestre extension problem, which are of general interest. This work is motivated by Caselli et al. (Yau’s conjecture for nonlocal minimal surfaces, arxiv preprint, 2023), which defines nonlocal minimal surfaces on closed Riemannian manifolds and shows the existence of infinitely many of them for any metric on the manifold, ultimately proving the nonlocal version of a conjecture of Yau (Ann Math Stud 102:669–706, 1982). Indeed, the definitions and results in the present work serve as an essential technical toolbox for the results in Caselli et al. (Yau’s conjecture for nonlocal minimal surfaces, arxiv preprint, 2023).

Funder

H2020 European Research Council

‘la Caixa’ Foundation

Scuola Normale Superiore

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3