Abstract
AbstractThe Milnor number $$\mu _f$$
μ
f
of a holomorphic function $$f :({\mathbb {C}}^n,0) \rightarrow ({\mathbb {C}},0)$$
f
:
(
C
n
,
0
)
→
(
C
,
0
)
with an isolated singularity has several different characterizations as, for example: 1) the number of critical points in a morsification of f, 2) the middle Betti number of its Milnor fiber $$M_f$$
M
f
, 3) the degree of the differential $${\text {d}}f$$
d
f
at the origin, and 4) the length of an analytic algebra due to Milnor’s formula $$\mu _f = \dim _{\mathbb {C}}{\mathcal {O}}_n/{\text {Jac}}(f)$$
μ
f
=
dim
C
O
n
/
Jac
(
f
)
. Let $$(X,0) \subset ({\mathbb {C}}^n,0)$$
(
X
,
0
)
⊂
(
C
n
,
0
)
be an arbitrarily singular reduced analytic space, endowed with its canonical Whitney stratification and let $$f :({\mathbb {C}}^n,0) \rightarrow ({\mathbb {C}},0)$$
f
:
(
C
n
,
0
)
→
(
C
,
0
)
be a holomorphic function whose restriction f|(X, 0) has an isolated singularity in the stratified sense. For each stratum $${\mathscr {S}}_\alpha $$
S
α
let $$\mu _f(\alpha ;X,0)$$
μ
f
(
α
;
X
,
0
)
be the number of critical points on $${\mathscr {S}}_\alpha $$
S
α
in a morsification of f|(X, 0). We show that the numbers $$\mu _f(\alpha ;X,0)$$
μ
f
(
α
;
X
,
0
)
generalize the classical Milnor number in all of the four characterizations above. To this end, we describe a homology decomposition of the Milnor fiber $$M_{f|(X,0)}$$
M
f
|
(
X
,
0
)
in terms of the $$\mu _f(\alpha ;X,0)$$
μ
f
(
α
;
X
,
0
)
and introduce a new homological index which computes these numbers directly as a holomorphic Euler characteristic. We furthermore give an algorithm for this computation when the closure of the stratum is a hypersurface.
Funder
Gottfried Wilhelm Leibniz Universität Hannover
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Arnold, V., Gusein-Zade, S., Varchenko, A.: Singularities of Differentiable Maps, vol. II. Birkhäuser, Basel (1985)
2. Brasselet, J.P., Massey, D., Parameswaran, A.J., Seade, J.: Euler obstruction and defects of functions on singular varieties. J. Lond. Math. Soc. (2) 70(1), 59–76 (2004)
3. Brasselet, J.P., Schwartz, M.H.: Sur les classes de Chern d’un ensemble analytique complexe. Astérisque 82–83, 93–147 (1981)
4. Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1993)
5. Burghelea, D., Verona, A.: Local homological properties of analytic sets. Manuscr. Math. 7, 55–66 (1972). https://doi.org/10.1007/BF01303536
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Local linear Morsifications;Revue Roumaine Mathematiques Pures Appliquees;2024-06-30
2. Euler obstruction, Brasselet number and critical points;Research in the Mathematical Sciences;2024-03-22
3. Morse numbers of function germs with isolated singularities;The Quarterly Journal of Mathematics;2023-08-09
4. Indices of Vector Fields and 1-Forms;Handbook of Geometry and Topology of Singularities IV;2023