Abstract
AbstractWe construct an Euler system associated to regular algebraic, essentially conjugate self-dual cuspidal automorphic representations of $${{\,\mathrm{GL}\,}}_3$$
GL
3
over imaginary quadratic fields, using the cohomology of Shimura varieties for $${\text {GU}}(2, 1)$$
GU
(
2
,
1
)
.
Funder
Royal Society
Simons Foundation
Directorate for Mathematical and Physical Sciences
European Research Council
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Ancona, G.: Décomposition de motifs abéliens. Manuscripta Math. 146(3–4), 307–328 (2015)
2. Barnet-Lamb, T., Geraghty, D., Harris, M., Taylor, R.: A family of Calabi-Yau varieties and potential automorphy II. Publ. Res. Inst. Math. Sci. (Kyoto) 47(1), 29–98 (2011)
3. Clozel, L., Harris, M., Labesse, J.-P.: Construction of automorphic Galois representations, I, Stabilization of the trace formula, Shimura varieties, and arithmetic applications: I. On the stabilization of the trace formula. International Press of Boston, Somerville, MA, pp. 497–527 (2011)
4. Gelbart, S., Piatetski-Shapiro, I.: Automorphic forms and $$L$$-functions for the unitary group, Lie group representations, II (College Park, Md., 1982/1983), Lecture Notes in Math. 1041, pp. 141–184, Springer, Berlin (1984)
5. Goodman, R., Wallach, N.R.: Symmetry, representations, and invariants, Graduate Texts in Mathematics, vol. 255. Springer, Berlin (2009)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Higher Hida theory and p-adic L-functions for GSp4;Duke Mathematical Journal;2021-12-01
2. Euler systems for GSp(4);Journal of the European Mathematical Society;2021-08-09