Almost everywhere divergence of Cesàro means of subsequences of partial sums of trigonometric Fourier series

Author:

Gát GyörgyORCID

Abstract

AbstractIn this paper, we investigate the relationship between pointwise convergence of the arithmetic means corresponding to the subsequence of partial Fourier sums $$(S_{k_j}f: j\in \mathbb {N})$$ ( S k j f : j N ) (for $$f\in L^1(\mathbb {T})$$ f L 1 ( T ) ) and the structure of the chosen subsequence of the sequence of natural numbers $$(k_j: j\in \mathbb {N})$$ ( k j : j N ) . More precisely, the problem we deal with is to provide necessary and sufficient conditions for a subsequence $$\mathcal {N}$$ N of $$\mathbb {N}$$ N that has the following property: for any subsequence $$\mathcal {N^{\prime }} = (k_j: j\in \mathbb {N})$$ N = ( k j : j N ) of $$\mathcal {N}$$ N and any $$f\in L^1(\mathbb {T})$$ f L 1 ( T ) one has $$\frac{1}{N}\sum _{j=1}^N S_{k_j}f(x) \rightarrow f(x)$$ 1 N j = 1 N S k j f ( x ) f ( x ) for a.e. $$x\in \mathbb {T}$$ x T . A direct corollary of this paper’s main theorem is that there exists a subsequence $$(k_j)$$ ( k j ) of the sequence of natural numbers and an integrable function f such that the arithmetic means of $$S_{k_j}f$$ S k j f do not converge to f almost everywhere. This is a negative answer to a question that originated in an article by Zalcwasser in 1936 Zalcwasser (Stud. Math. 6, 82–88 (1936)) for some increasing sequences $$(k_j)$$ ( k j ) of natural numbers.

Funder

University of Debrecen

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference24 articles.

1. Zalcwasser, Z.: Sur la sommabilité des séries de Fourier. Stud. Math. 6, 82–88 (1936)

2. Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

3. Hunt, R.A.: On the convergence of Fourier series. In Orthogonal expansions and their continuous analogues, Southern Ill. University Press, Carbondale, Ill p. 235–255 (1968) (English)

4. Antonov, N.Y.: Convergence of Fourier series. East J. Approx. 2, 187–196 (1996). (English)

5. Kolmogoroff, A.N.: Une série de Fourier-Lebesgue divergente presque partout. Fund. Math. 4, 324–328 (1923). (English)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3