Abstract
AbstractWe present a rigidity theorem for the action of the mapping class group $$\pi _0({\mathrm{Diff}}(M))$$
π
0
(
Diff
(
M
)
)
on the space $$\mathcal {R}^+(M)$$
R
+
(
M
)
of metrics of positive scalar curvature for high dimensional manifolds M. This result is applicable to a great number of cases, for example to simply connected 6-manifolds and high dimensional spheres. Our proof is fairly direct, using results from parametrised Morse theory, the 2-index theorem and computations on certain metrics on the sphere. We also give a non-triviality criterion and a classification of the action for simply connected 7-dimensional $${\mathrm{Spin}}$$
Spin
-manifolds.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Anderson, D.W., Brown Jr., E.H., Peterson, F.P.: Spin cobordism. Bull. Am. Math. Soc. 72, 256–260 (1966). https://doi.org/10.1090/S0002-9904-1966-11486-6
2. Adachi, M.: Embeddings and Immersions. Translations of mathematical monographs. American Mathematical Society, Providence (1993)
3. Botvinnik, B., Ebert, J., Randal-Williams, O.: Infinite loop spaces and positive scalar curvature. Invent. Math. 209(3), 749–835 (2017). https://doi.org/10.1007/s00222-017-0719-3
4. Chernysh, V.: On the homotopy type of the space $${\cal{R}}^+(m)$$, 2004, arXiv:math/0405235
5. Dieck, T.: Algebraic Topology. EMS textbooks in mathematics, European Mathematical Society, Zurich (2008)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献