Harmonic tropical morphisms and approximation

Author:

Lang LionelORCID

Abstract

AbstractHarmonic amoebas are generalisations of amoebas of algebraic curves immersed in complex tori. Introduced by Krichever in 2014, the consideration of such objects suggests to enlarge the scope of tropical geometry. In the present paper, we introduce the notion of harmonic morphisms from tropical curves to affine spaces and show how these morphisms can be systematically described as limits of families of harmonic amoeba maps on Riemann surfaces. It extends previous results about approximation of tropical curves in affine spaces and provides a different point of view on Mikhalkin’s approximation Theorem for regular phase-tropical morphisms, as stated e.g. by Mikhalkin in 2006. The results presented here follow from the study of imaginary normalised differentials on families of punctured Riemann surfaces and suggest interesting connections with compactifications of moduli spaces.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

European Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference26 articles.

1. Ahlfors, L.V.: Conformal Invariants. Topics in Geometric Function Theory. McGraw-Hill Series in Higher Mathematics. New York etc, vol. 7. McGraw-Hill Book Company, New York-Düsseldorf-Johannesburg (1973)

2. Ahlfors, L.V.: Complex analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, 3rd edn. McGraw-Hill Book Co., New York (1978). https://zbmath.org/?q=an%3A0395.30001

3. Bertrand, Benoît, Brugallé, Erwan, de Medrano, Lucía López: Planar tropical cubic curves of any genus, and higher dimensional generalisations. Enseign. Math. 64(3–4), 415–457 (2018)

4. Brannetti, S., Melo, M., Viviani, F.: On the tropical Torelli map. Adv. Math. 226(3), 2546–2586 (2011)

5. Buser, P.: Geometry and spectra of compact Riemann surfaces. Birkhäuser, Boston (1992)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Period Integrals of Hypersurfaces via Tropical Geometry;International Mathematics Research Notices;2024-06-14

2. A Survey on Computational Aspects of Polynomial Amoebas;Mathematics in Computer Science;2023-07-27

3. Patchworking the Log-critical locus of planar curves;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3