Author:
Brazitikos Silouanos,Giannopoulos Apostolos,Pafis Minas
Abstract
AbstractLet $$\mu $$
μ
be a log-concave probability measure on $${\mathbb R}^n$$
R
n
and for any $$N>n$$
N
>
n
consider the random polytope $$K_N=\textrm{conv}\{X_1,\ldots ,X_N\}$$
K
N
=
conv
{
X
1
,
…
,
X
N
}
, where $$X_1,X_2,\ldots $$
X
1
,
X
2
,
…
are independent random points in $${\mathbb R}^n$$
R
n
distributed according to $$\mu $$
μ
. We study the question if there exists a threshold for the expected measure of $$K_N$$
K
N
. Our approach is based on the Cramer transform $$\Lambda _{\mu }^{*}$$
Λ
μ
∗
of $$\mu $$
μ
. We examine the existence of moments of all orders for $$\Lambda _{\mu }^{*}$$
Λ
μ
∗
and establish, under some conditions, a sharp threshold for the expectation $${\mathbb {E}}_{\mu ^N}[\mu (K_N)]$$
E
μ
N
[
μ
(
K
N
)
]
of the measure of $$K_N$$
K
N
: it is close to 0 if $$\ln N\ll {\mathbb {E}}_{\mu }(\Lambda _{\mu }^{*})$$
ln
N
≪
E
μ
(
Λ
μ
∗
)
and close to 1 if $$\ln N\gg {\mathbb {E}}_{\mu }(\Lambda _{\mu }^{*})$$
ln
N
≫
E
μ
(
Λ
μ
∗
)
. The main condition is that the parameter $$\beta (\mu )=\textrm{Var}_{\mu }(\Lambda _{\mu }^{*})/({\mathbb {E}}_{\mu }(\Lambda _{\mu }^{*}))^2$$
β
(
μ
)
=
Var
μ
(
Λ
μ
∗
)
/
(
E
μ
(
Λ
μ
∗
)
)
2
should be small.
Funder
Hellenic Foundation for Research and Innovation
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Artin, E.: The gamma function, Athena Series: Selected Topics in Mathematics. Holt, Rinehart and Winston, New York, vii+39 pp (1964)
2. Artstein-Avidan, S., Giannopoulos, A., Milman, V. D.: Asymptotic Geometric Analysis, vol. I, Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)
3. Bonnet, G., Chasapis, G., Grote, J., Temesvari, D., Turchi, N.: Threshold phenomena for high-dimensional random polytopes. Commun. Contemp. Math. 21(5), 1850038 (2019)
4. Bonnet, G., Kabluchko, Z., Turchi, N.: Phase transition for the volume of high-dimensional random polytopes. Random Struct. Algorithms 58(4), 648–663 (2021)
5. Borell, C.: Complements of Lyapunov’s inequality. Math. Ann. 205, 323–331 (1973)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献