Abstract
AbstractWe give Martin representation of nonnegative functions caloric with respect to the fractional Laplacian in Lipschitz open sets. The caloric functions are defined in terms of the mean value property for the space-time isotropic $$\alpha $$
α
-stable Lévy process. To derive the representation, we first establish the existence of the parabolic Martin kernel. This involves proving new boundary regularity results for both the fractional heat equation and the fractional Poisson equation with Dirichlet exterior conditions. Specifically, we demonstrate that the ratio of the solution and the Green function is Hölder continuous up to the boundary.
Funder
Narodowe Centrum Nauki
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference65 articles.
1. Abatangelo, N.: Large $$s$$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete Contin. Dyn. Syst. 35(12), 5555–5607 (2015)
2. Abels, H., Grubb, G.: Fractional-order operators on nonsmooth domains. J. Lond. Math. Soc. (2) 107(4), 1297–1350 (2023)
3. Allen, M., Shahgholian, H.: A new boundary Harnack principle (equations with right hand side). Arch. Ration. Mech. Anal. 234(3), 1413–1444 (2019)
4. Armstrong, G.: Unimodal Lévy processes on bounded Lipschitz sets. Doctoral dissertation. University of Oregon (2018)
5. Banach, S.: Wstęp do teorii funkcji rzeczywistych. Monografie Matematyczne, Tom XVII. Polskie Towarzystwo Matematyczne, Warszawa-Wrocław (1951)