Abstract
AbstractWe study the existence, nonexistence and asymptotics of positive solutions to the Gierer–Meinhardt system $$\begin{aligned} {\left\{ \begin{array}{ll} \displaystyle -\Delta u+\lambda u=\frac{u^p}{v^q}+\rho (x)\,, u>0 &{} \text{ in } {\mathbb {R}}^N_+:={\mathbb {R}}^{N-1}\times (0, \infty ), \\ \displaystyle -\Delta v+\lambda v=\frac{u^m}{v^s} \,, v>0 &{} \text{ in } {\mathbb {R}}^N_+, \end{array}\right. } \end{aligned}$$
-
Δ
u
+
λ
u
=
u
p
v
q
+
ρ
(
x
)
,
u
>
0
in
R
+
N
:
=
R
N
-
1
×
(
0
,
∞
)
,
-
Δ
v
+
λ
v
=
u
m
v
s
,
v
>
0
in
R
+
N
,
where $$N\ge 3$$
N
≥
3
, $$\lambda >0$$
λ
>
0
and $$\rho \in C({\overline{{\mathbb {R}^N_+}}})$$
ρ
∈
C
(
R
+
N
¯
)
, $$\rho >0$$
ρ
>
0
. The solutions (u, v) are assumed to satisfy the homogeneous Neumann boundary condition $$\displaystyle \frac{\partial u}{\partial x_N}=\frac{\partial v}{\partial x_N}=0$$
∂
u
∂
x
N
=
∂
v
∂
x
N
=
0
on $$\partial {\mathbb {R}}^N_+$$
∂
R
+
N
and $$u(x)\rightarrow 0$$
u
(
x
)
→
0
, $$v(x)\rightarrow 0$$
v
(
x
)
→
0
as $$x\in {\mathbb {R}}^N_+$$
x
∈
R
+
N
, $$|x|\rightarrow \infty $$
|
x
|
→
∞
. Under various conditions on the exponents $$m,p,q,s>0$$
m
,
p
,
q
,
s
>
0
and the data $$\rho (x)$$
ρ
(
x
)
we obtain qualitative properties of the solutions (u, v). In particular, we derive the existence of a solution (u, v) with u(x) having the minimal asymptotic behaviour $$u(x)\simeq \Phi _\lambda (x)$$
u
(
x
)
≃
Φ
λ
(
x
)
as $$|x|\rightarrow \infty $$
|
x
|
→
∞
, where $$\Phi _\lambda $$
Φ
λ
denotes the fundamental solution of $$-\Delta +\lambda I$$
-
Δ
+
λ
I
in $${\mathbb {R}^N_+}$$
R
+
N
. The approach combines integral representations of solutions and various integral estimates with fixed point arguments.
Funder
University College Dublin
Publisher
Springer Science and Business Media LLC