Author:
Farkas Gavril,Verra Alessandro
Abstract
AbstractUsing the connection discovered by Hassett between the Noether-Lefschetz moduli space $$\mathcal {C}_{42}$$
C
42
of special cubic fourfolds of discriminant 42 and the moduli space $$\mathcal {F}_{22}$$
F
22
of polarized K3 surfaces of genus 22, we show that the universal K3 surface over $$\mathcal {F}_{22}$$
F
22
is unirational.
Funder
Humboldt-Universität zu Berlin
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Bayer, A., Macrì, E.: MMP for moduli of sheaves on $$K3$$s via wall-crossing: nef and movable cones. Lagrangian Fib. Invent. Math. 198, 505–590 (2014)
2. Beauville, A., Donagi, R.: La variété des droites d’une hypersurface cubique de dimension $$4$$, C.R. Acad. Sci. Paris Ser. I Math. 301, 703–706 (1985)
3. Bergeron, N., Li, Z., Milsson, J., Moeglin, C.: The Noether-Lefschetz conjecture and generalizations. Invent. Math. 208, 501–552 (2017)
4. Bolognesi, M., Russo, F.: Some loci of rational cubic fourfolds. Math. Annalen 373, 165–190 (2019)
5. Coppens, M.: Embeddings of general blowings-ups at points. J. Reine Angew. Math. 469, 179–198 (1995)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献