Author:
Hernandez Felipe,Raiță Bogdan,Spector Daniel
Abstract
AbstractLet $$d\ge 2$$
d
≥
2
. In this paper we give a simple proof of the endpoint Besov-Lorentz estimate $$\begin{aligned} \Vert I_\alpha F\Vert _{{\dot{B}}^{0,1}_{d/(d-\alpha ),1}(\mathbb {R}^d;\mathbb {R}^k)} \le C \Vert F \Vert _{L^1(\mathbb {R}^d;\mathbb {R}^k)} \end{aligned}$$
‖
I
α
F
‖
B
˙
d
/
(
d
-
α
)
,
1
0
,
1
(
R
d
;
R
k
)
≤
C
‖
F
‖
L
1
(
R
d
;
R
k
)
for all $$F \in L^1(\mathbb {R}^d;\mathbb {R}^k)$$
F
∈
L
1
(
R
d
;
R
k
)
which satisfy a first order cocancelling differential constraint, where $$\alpha \in (0,d)$$
α
∈
(
0
,
d
)
and $$I_\alpha $$
I
α
is a Riesz potential. We show how this implies endpoint Besov–Lorentz estimates for Hodge systems with $$L^1$$
L
1
data via fractional integration for exterior derivatives.
Funder
Hertz Foundation
Mathematics Division, National Center for Theoretical Sciences
Ministry of Science and Technology, Taiwan
Yushan Fellow Program
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献