Author:
Feng Tony,Landesman Aaron,Rains Eric M.
Abstract
AbstractFix a positive integer n and a finite field $${\mathbb {F}}_q$$
F
q
. We study the joint distribution of the rank $${{\,\mathrm{rk}\,}}(E)$$
rk
(
E
)
, the n-Selmer group $$\text {Sel}_n(E)$$
Sel
n
(
E
)
, and the n-torsion in the Tate–Shafarevich group "Equation missing" as E varies over elliptic curves of fixed height $$d \ge 2$$
d
≥
2
over $${\mathbb {F}}_q(t)$$
F
q
(
t
)
. We compute this joint distribution in the large q limit. We also show that the “large q, then large height” limit of this distribution agrees with the one predicted by Bhargava–Kane–Lenstra–Poonen–Rains.
Funder
National Science Foundation
Stanford
Publisher
Springer Science and Business Media LLC
Reference46 articles.
1. Manjul, B., Daniel, M.K., Hendrik, W.L., Jr., Bjorn, P., Eric, R.: Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves. Camb. J. Math. 3(3), 275–321 (2015)
2. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron Models. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). [Results in Mathematics and Related Areas (3)], vol. 21. Springer, Berlin (1990)
3. Bhargava, M., Shankar, A.: The average number of elements in the 4-selmer groups of elliptic curves is 7. arXiv:1312.7333v1 (arXiv preprint) (2013)
4. Bhargava, M., Shankar, A.: The average size of the 5-selmer group of elliptic curves is 6, and the average rank is less than 1. arXiv:1312.7859v1 (arXiv preprint) (2013)
5. Bhargava, M., Shankar, A.: Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves. Ann. Math. (2) 181(1), 191–242 (2015)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献