Abstract
AbstractWe prove the validity of the p-Brunn–Minkowski inequality for the intrinsic volume $$V_k$$
V
k
, $$k=2,\dots , n-1$$
k
=
2
,
⋯
,
n
-
1
, of symmetric convex bodies in $${{\mathbb {R}}}^n$$
R
n
, in a neighbourhood of the unit ball when one of the bodies is the unit ball, for $$0\le p<1$$
0
≤
p
<
1
. We also prove that this inequality does not hold true on the entire class of convex bodies of $${{\mathbb {R}}}^n$$
R
n
, when p is sufficiently close to 0.
Funder
Università degli Studi di Firenze
Publisher
Springer Science and Business Media LLC
Reference32 articles.
1. Abate, M., Tovena, F.: Curves and surfaces, translated from Italian by D. A. Gewurz, Unitext, 55. Springer, Milan (2012)
2. Bonnesen, T., Fenchel, W.: Theorie der konvexen Körper. Springer, Berlin (1934). [Reprint: Chelsea Publ. Co., New York (1948)
3. English translation: BCS Associates, Moscow (1987)]
4. Böröczky, K., De, A.: Stability of the logarithmic Brunn–Minkowski inequality in the case of many hyperplane symmetries. arXiv:2101.02549(preprint)
5. Böröczy, K., Kalantzopoulos, P.: Log-Brunn–Minkowski inequality under symmetry. arXiv:2002.12239(preprint)