Khovanov homotopy type, periodic links and localizations

Author:

Borodzik MaciejORCID,Politarczyk WojciechORCID,Silvero MarithaniaORCID

Abstract

AbstractGiven an m-periodic link $$L\subset S^3$$ L S 3 , we show that the Khovanov spectrum $$\mathcal {X}_L$$ X L constructed by Lipshitz and Sarkar admits a group action. We relate the Borel cohomology of $$\mathcal {X}_L$$ X L to the equivariant Khovanov homology of L constructed by the second author. The action of Steenrod algebra on the cohomology of $$\mathcal {X}_L$$ X L gives an extra structure of the periodic link. Another consequence of our construction is an alternative proof of the localization formula for Khovanov homology, obtained first by Stoffregen and Zhang. By applying the Dwyer–Wilkerson theorem we express Khovanov homology of the quotient link in terms of equivariant Khovanov homology of the original link.

Funder

Narodowe Centrum Nauki

European Research Council

Ikerbasque, Basque Foundation for Science

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference51 articles.

1. Asaeda, M., Przytycki, J., Sikora, A.: Categorification of the Kauffman bracket skein module of $$I$$-bundles over surfaces. Algebr. Geom. Topol. 4, 1177–1210 (2004)

2. Bar-Natan, D.: Khovanov’s homology for tangles and cobordisms. Geom. Topol. 9, 1443–1499 (2005)

3. Borel, A.: Seminar on transformation groups, With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No 46. Princeton University Press, Princeton (1960)

4. Borodzik, M., Jankowska, D., Politarczyk, W.: Equivariant Khovanov homotopy type for $$T(2,k)$$ torus links (2020) (in preparation)

5. Borodzik, M., Politarczyk, W.: Khovanov homology and periodic links (2017). arXiv:1704.07316 (to appear in Indiana Univ. Math. J)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Localization in Khovanov homology;Geometry & Topology;2024-07-18

2. Khovanov homology of strongly invertible knots and their quotients;Proceedings of Symposia in Pure Mathematics;2024

3. Categorical lifting of the Jones polynomial: a survey;Bulletin of the American Mathematical Society;2022-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3