Time-Dependant Microstructural Evolution and Tribological Behaviour of a 26 wt% Cr White Cast Iron Subjected to a Destabilization Heat Treatment

Author:

Nayak U. PranavORCID,Mücklich Frank,Guitar María Agustina

Abstract

Abstract By employing destabilization heat treatments (HT), it is possible to create microstructures possessing different fractions of carbides, martensite, and austenite, which lead to varying tribological responses in abrasion-resistant high-chromium white cast irons. In the current work, the destabilization temperature was kept constant at 980 °C, whereas the time was varied from 0 to 90 min. As a result, the microstructure of the 26 wt% Cr white cast iron had a mixture of M23C6 secondary carbides (SC), martensite, and a decrease in the amount of retained austenite (RA) with increasing destabilization holding time. The microstructures as well as their tribological characteristics were evaluated by combining confocal laser scanning microscopy, SEM, XRD, and EBSD, together with dry-sliding linear reciprocating wear tests. Results show that the volume fraction of SC were statistically comparable in samples destabilized for 0 and 90 min, although the average size was almost two-fold in the latter. This had direct implications on the wear properties where a decrease of up to 50% in the wear rate of destabilized samples compared to the non-treated material was observed. Furthermore, the sample with the lowest increase in the matrix hardness (~ 20% higher than non-treated), showed the highest wear resistance. This was attributed to a favourable distribution of the RA (~ 10%) and SC volume fraction (~ 5%), in combination with the harder martensitic matrix. Finally, the results obtained from this study shed light on the ability to alter the HT parameters to tune the microstructure depending upon the application prerequisite. Graphical Abstract

Funder

Deutsche Forschungsgemeinschaft

European Regional Development Fund

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3