Biodegradable Mg Electrodes for Iontophoretic Transdermal Drug Delivery

Author:

Jeong Goeen,Han Hyung-Seop,Jeon Hojeong,Kim Yu-Chan,Jang Ho Won,Ok Myoung-RyulORCID

Abstract

AbstractBiodegradable metals have received limited attention for application in transdermal drug delivery, although metallic microneedles (MNs) and iontophoresis have been thoroughly researched for this purpose. Here, we present Mg as a salient candidate for an MN electrode. Its metallic properties enable the application of voltage to enhance the diffusion of charged drug molecules, while hydrogen gas generated during Mg corrosion prevents its application to electrodes. The Mg MN electrode was fabricated using a nanosecond laser, and the amount of hydrogen gas were measured with applied potential during iontophoresis. Accordingly, an appropriate potential window for iontophoresis was established based on the combined effect of enhanced drug diffusion by applied electric potential and impediment from hydrogen generation. The dye permeation tests of the Mg MN on the porcine skin demonstrated the combined effect of the Mg MN and iontophoresis. The dye migration decreased at higher voltages due to excess hydrogen generation and the corrosion of needle tips, both making the diffusion of charged dye molecules along the Mg MN surface harder. These results demonstrate optimal potential range of Mg MN electrodes for transdermal drug delivery with an electric field and bubble generation during iontophoresis. Graphical Abstract

Funder

Institute for Information and Communications Technology Promotion

Small and Medium Business Administration

Korea National Institute of Health

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3