Rapid Consolidation of WC-ZrSiO4 Hard Materials by Spark Plasma Sintering: Microstructure, Densification, and Mechanical Properties

Author:

Lee Jeong-Han,Oh Ik-Hyun,Kim Ju-Hun,Hong Sung-Kil,Park Hyun-Kuk

Abstract

Abstract Densely consolidated WC-based hard materials with 520 vol% ZrSiO4 was fabricated by spark plasma sintering at 1400 ℃ at a constant heating rate of 70 ℃/min−1. To achieve mechanical alloying of WC-ZrSiO4, planetary ball milling was carried out for 12 h, during which the brittle-brittle components (WC-ZrSiO4) became fragmented and their particles became refined. It was observed that certain, specific, non-isothermal sintering kinetics, such as apparent activation energy, sintering exponents, and densification strain, affected the densification behavior. The evolution of phase structure from powder to compact was found to be related the lattice distortion and micro-strain in the basal planes of WC. By examining the mechanical properties of the samples, it was that the added zircon content leads to enhanced fracture toughness (12.9 MPa m1/2) owing to the presence of WC-ZrSiO4 in the cemented carbide. In fact, the microcrack propagation of the fracture passed through zircon from a transgranular to a ductile component (fcc) where the crack tips could be absorbed. Graphic Abstract

Funder

Korea Institute of Industrial Technology

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3