Microstructure, Corrosion and Electrochemical Properties of Cu/SiC Composites in 3.5 wt% NaCl Solution

Author:

Sadawy M. M.,Fayed Saad. M.,Tayea Mahmoud,El-Batanony I. G.

Abstract

AbstractThis study investigated the role of SiC as a reinforcement on microstructure, corrosion, and electrochemical properties of Cu/xSiC (x = 0, 5, 10, 15, 20, 25, and 30 vol% SiC) composites. The powder metallurgy route was used to fabricate Cu/SiC composite. The distribution of SiC reinforcing particles in the Cu matrix and their interfaces were investigated using optical and SEM/EDS microscopes. The various phases of Cu strengthened with SiC particles were detected using an X-ray diffractometer. The anticorrosion behavior and electrochemical properties of composites were investigated using various electrochemical techniques in 3.5 wt% NaCl solution. The electrochemical studies showed that the inclusion of SiC particles in the Cu matrix improved the resistance to corrosion. It was found that as the reinforcing particles increased to 20 vol%, the corrosion potential increased from − 240 to − 183 mVAg/AgCl, and the corrosion current density decreased from 5.01 to 0.02 µA cm−2, while the passive current density decreased from 17.58 to 4.74 × 10–4 A cm−2. This behavior resulted from the nucleation and production of a good protective layer. On another side, increasing reinforcing particles over 20 vol%, the corrosion current density increased from 0.05 to 0.63 µA cm−2, while the corrosion potential shifted from − 196 to − 206 mVAg/AgCl. Graphical Abstract

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3