Abstract
AbstractThe detection of humidity is crucial for various applications in industry, healthcare, and the environment. To meet the needs of many of these applications, humidity sensors must be flexible, disposable, and easily fabricated. This article introduces a cost-effective and flexible humidity sensor created on a paper substrate, using graphene-polypyrrole-carbon black ink. The sensor shows excellent sensing capabilities, with a resistance change of approximately 12.2 Ω/%RH when exposed to humidity ranging from 23%RH to 92.7%RH. Additionally, the sensor is highly flexible, stable, and repeatable for over 50 cycles, with a short response/recovery time of approximately 5 s/7 s for respiration rate monitoring. Furthermore, the sensor demonstrates good reproducibility, with minor variations of approximately ± 1 Ω/%RH. The performance of the produced humidity sensor is assessed for monitoring humidity in a spatial setting as well as monitoring soil moisture. As a result, these findings indicate that the proposed humidity sensor is resilient enough to be used in wearable and flexible electronic devices.
Publisher
Springer Science and Business Media LLC
Subject
Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Biomaterials,Ceramics and Composites
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献