Abstract
AbstractAluminium alloy-based metal matrix composites have successfully provided effective wear resistance and repair solutions in the automotive and aerospace sectors; however, the design and manufacture of these alloys are still under development. In this study, the microstructure, mechanical properties and wear resistance of low-pressure cold-sprayed Al-7 Mg/Al2O3 and Al-10 Mg/Al2O3 composite coatings were investigated. The specific wear rates of the coatings were measured when testing them against alumina (Al2O3) counterbody, and the results showed that the cold-sprayed Al-10 Mg/Al2O3 composite coating showed less wear due to its superior hardness, lower porosity and shorter mean free path compared to the Al-7 Mg/Al2O3 composite coating. The microstructural analysis of the worn surfaces of the composite coatings revealed abrasive wear as the primary wear mechanism, and more damages were observed on Al-7 Mg/Al2O3 composite coatings. Most notably, Al2O3 particles were pulled out from the coating and were entrapped between the Al2O3 counterbody and the coating contact surfaces, resulting in a three-body abrasion mode.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Biomaterials,Ceramics and Composites
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献