Synthesis and characterization of magnetic graphene oxide: nanomaterial to reduce heavy oil viscosity

Author:

Pérez-Rodriguez Elcy M.,Gutierrez-Niño Nelson,Santos-Santos Nicolas,Cabanzo-Hernandez Rafael,Mejia-Ospino EnriqueORCID

Abstract

AbstractIn this work, the synthesis of graphene oxide was carried out by the modified Hummers method, then ferromagnetic nanoparticles were added by a bottom-up route, after which the material was washed to purify it and freeze-dried to obtain dry particles. The material was characterized by infrared spectroscopy to obtain information about the bands associated with graphene oxide and magnetite, scanning electron microscopy was performed where it is observed how the graphene oxide flake loses its folded veil character and finally a thermogravimetric analysis as a complementary technique to determine the thermal behavior of the material where a peak of degradation was obtained at 749 °C, Additionally, a test of irradiation of the material in a microwave and in a commercial rheometer was carried out, which showed an increase in temperature that modified the viscosity value by 80%.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Industrial University of Santander

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3