Abstract
AbstractA non-destructive thickness measurement technique based on terahertz (THz) reflectivity was successfully deployed to interrogate 7 wt.% yttria-stabilised zirconia thermal barrier coatings (TBCs) produced by electron-beam physical vapour deposition (EB-PVD). The THz technique was shown to produce accurate thickness maps for different samples with a resolution of 1 × 1 mm over a surface of 65 × 20 mm that were compared with direct examination of key cross-sections. All thickness measurements on different samples were calculated using a single value of refractive index. Small defects characteristic of EB-PVD, such as “carrot growths” and variations on column inclination, were evaluated and did not produce significant variations in the refractive index of the TBC. Moreover, the thickness maps correctly display thickness variations that are a consequence of the point-source nature of EB-PVD evaporation. In summary, this paper demonstrates the technique can be successfully deployed on large surfaces, and across different coatings of the same material produced under the same deposition conditions. It is shown that a single n value is required to map the thickness distribution for all samples. This combination of qualities indicates the potential of the technique for in-line control of TBC manufacture.
Publisher
Springer Science and Business Media LLC
Subject
Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Biomaterials,Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献