In silico virtual screening of lead compounds for major antigenic sites in respiratory syncytial virus fusion protein

Author:

Mathew Shilu,Taleb Sara,Eid Ali Hussein,Althani Asmaa A.,Yassine Hadi M.

Abstract

AbstractHuman respiratory syncytial virus (RSV) is a leading ubiquitous respiratory pathogen in newborn infants, young children, and the elderly, with no vaccine available to date. The viral fusion glycoprotein (RSV F) plays an essential role in the infection process, and it is a primary target of neutralizing antibodies, making it an attractive site for vaccine development. With this in view, there is a persistent need to identify selective antiviral drugs against RSV, targeting the major antigenic sites on the F protein. We aimed to conduct a robust in silico high-throughput drug screening of one million compounds to explore potential inhibitors that bind the major antigenic site Ø and site II on RSV F protein, which are the main target of neutralizing antibodies (NAb). We utilized the three-dimensional crystallographic structure of both antigenic site Ø on pre-F and antigenic II on post-F to screen for potential anti-RSV inhibitors. A library of one million small compounds was docked to explore lead binders in the major antigenic sites by using virtual lab bench CLC Drug Discovery. We also performed Quantitative Structure-Activity and Relationship (QSAR) for the lead best binders known for their antiviral activity. Among one million tested ligands, seven ligands (PubChem ID: 3714418, 24787350, 49828911, 24802036, 79824892, 49726463, and 3139884) were identified as the best binders to neutralizing epitopes site Ø and four ligands (PubChem ID: 865999, 17505357, 24802036, and 24285058) to neutralizing epitopes site II, respectively. These binders exhibited significant interactions with neutralizing epitopes on RSV F, with an average of six H bonds, docking energy of − 15.43 Kcal·mol−1, and minimum interaction energy of − 7.45 Kcal·mol−1. Using in silico virtual screening, we identified potential RSV inhibitors that bind two major antigenic sites on the RSV F protein. Using structure-based design and combination-based drug therapy, identified molecules could be modified to generate the next generation anti-RSV drugs.

Funder

Qatar University

Publisher

Springer Science and Business Media LLC

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3