Effect of SiC addition on laser-based CoNi binary alloy coatings on Ti-6Al-4V alloy

Author:

Adesina Olanrewaju Seun,Popoola Abimbola Patricia,Farotade Gabriel Ayokunle,Obadele Babatunde Abiodun,Sanyaolu Olufemi Oluseun,Jeje Samson Olaitan,Rominiyi Azeez Lawan

Abstract

AbstractThis research explores the impact of variations in laser scanning speed and the incorporation levels of SiC-Ni-Co powders on Ti-6Al-4V alloy using laser surface cladding technique. Key parameters, including a consistent laser power of 700 W, a 4 mm beam spot size, a powder feed rate of 1.0 g/min, and a gas flow rate of 3 L/min, along with fixed powder compositions, were maintained. The laser scanning speeds were adjusted to 0.4 m/min, 0.8 m/min, and 1.2 m/min. Microstructural analyses were carried out using scanning electron microscopy (SEM) while Vickers microhardness was employed to assess coating hardness, and corrosion properties were evaluated using a linear potentiodynamic polarization technique. Following the corrosion attack, the protective oxides formed were identified through SEM and X-ray diffractometer (XRD). The results revealed a strong metallurgical relationship between the clad layer and the substrate, demonstrating the effectiveness of the laser-clad technique. Particularly, the highest laser scan speed exhibited the most significant improvements in hardness and corrosion resistance. The coatings displayed an average hardness value of 1269.20 HV0.1, a notable fourfold increase compared to the substrate's value of 334 HV0.1. Concerning corrosion, a clear correlation emerged between scan speed and polarization resistance, confirming that higher scan speeds could lead to enhanced polarization resistance.

Funder

Tshwane University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3