Theoretical and experimental investigations of vanadium pentoxide–based electrocatalysts for the hydrogen evolution reaction in alkaline media

Author:

Alhawa Dima Abu,Badreldin Ahmed,El-Ghenymy Abdellatif,Hassan Noor,Wubulikasimu Yiming,Elsaid Khaled,Abdel-Wahab AhmedORCID

Abstract

AbstractA key approach towards better realization of intermittent renewable energy resources, namely, solar and wind, is green electrochemical hydrogen production from water electrolysis. In recent years, there have been increasing efforts aimed at developing noble metal-free electrocatalysts that are earth-abundant and electroactive towards hydrogen evolution reaction (HER) in alkaline electrolytes, wherein an initial water dissociation step is followed by a two-electron transfer cathodic reaction. Although relatively earth-abundant, vanadium-based electrocatalysts have been sparsely reported due to subpar electroactivity and kinetics towards water electrolysis in general and alkaline electrolysis in specific. Herein, we investigate the fine-tuning of orthorhombic V2O5-based electrocatalysts as candidates for HER through a scalable two-step sol–gel calcination procedure. Briefly, surface-induced anionic oxygen deficiencies and cationic dopants are synergistically studied experimentally and theoretically. To that end, first-principle facet-dependent density function theory (DFT) calculations were conducted and revealed that the coupling of certain dopants on V2O5 and co-induction of oxygen vacancies can enhance the catalytic HER performance by the creation of new electronic states near the Fermi level (EF), enhancing conductivity, and modulating surface binding of adsorbed protons, respectively. This was reflected experimentally through kinetically non-ideal alkaline electrochemical HER using Zn0.4V1.6O5 whereby − 194 mV of overpotential was required to attain − 10 mA/cm2 of current density, as opposed to pristine V2O5 which required 32% higher overpotential requirement at the same conditions. The disclosed work can be extended to other intrinsically sluggish transition metal (TM)–based oxides via the presented systematic tuning of surface and bulk microenvironment modulation. Graphical Abstract

Funder

Texas A&M University at Qatar under its Responsive Research Seed Grants (RRSG) Program

Texas A&M University at Qatar

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3