Engineering β-catenin-derived peptides for α-catenin binding

Author:

Uddin S. M. NasirORCID,Rasool SaadORCID,Geethakumari Anupriya M.ORCID,Ahmed Wesam S.ORCID,Biswas Kabir H.ORCID

Abstract

AbstractThe complex formed by the β-catenin and α-catenin adaptor proteins acts as a molecular bridge that enables E-cadherin-based cell–cell adhesion assembly and maintenance in the epithelial tissue. This occurs through the interaction between the intracellular domain of E-cadherin and β-catenin on the one hand and between F-actin and α-catenin on the other hand. In addition to its role in cell–cell adhesion formation, it has been reported that E-cadherin mediates breast cancer cell metastasis to distant organs. Therefore, development of biomaterials such as peptides with ability to modulate the interaction between β-catenin and α-catenin presents an opportunity to modulate cell–cell adhesion. Here, we have performed computational and experimental analysis to develop β-catenin-derived peptides with the ability to bind α-catenin. Specifically, we analyzed the available β- and α-catenin complex structure and identified residues on β-catenin having potential to form new interactions upon mutation. We tested the wild-type (WT) and mutant β-catenin-derived peptides for their binding to α-catenin using conventional and steered molecular dynamics simulations, revealing an increased interaction of P128E and M131E mutant peptides. We then designed a Bioluminescence Resonance Energy Transfer (BRET)-based assay to monitor binding of the β-catenin-derived peptides with α-catenin, which revealed similar binding affinities of the WT and mutant β-catenin-derived peptides. Further, expression of the WT and the M131E mutant peptide resulted in a change in the aspect ratio of the cells suggestive of their ability to affect cell–cell adhesion. We envisage that the β-catenin-derived peptides engineered here will find application in blocking the interaction between β-catenin and α-catenin and, thus, modulate E-cadherin adhesion, which may lead to potential therapeutic avenue in abrogating E-cadherin-mediated metastasis of invasive breast cancer cells.

Funder

Qatar Foundation

Hamad Bin Khalifa University

Hamad bin Khalifa University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3