Unifying incidence and prevalence under a time-varying general branching process

Author:

Pakkanen Mikko S.ORCID,Miscouridou Xenia,Penn Matthew J.,Whittaker Charles,Berah Tresnia,Mishra Swapnil,Mellan Thomas A.,Bhatt SamirORCID

Abstract

AbstractRenewal equations are a popular approach used in modelling the number of new infections, i.e., incidence, in an outbreak. We develop a stochastic model of an outbreak based on a time-varying variant of the Crump–Mode–Jagers branching process. This model accommodates a time-varying reproduction number and a time-varying distribution for the generation interval. We then derive renewal-like integral equations for incidence, cumulative incidence and prevalence under this model. We show that the equations for incidence and prevalence are consistent with the so-called back-calculation relationship. We analyse two particular cases of these integral equations, one that arises from a Bellman–Harris process and one that arises from an inhomogeneous Poisson process model of transmission. We also show that the incidence integral equations that arise from both of these specific models agree with the renewal equation used ubiquitously in infectious disease modelling. We present a numerical discretisation scheme to solve these equations, and use this scheme to estimate rates of transmission from serological prevalence of SARS-CoV-2 in the UK and historical incidence data on Influenza, Measles, SARS and Smallpox.

Funder

Novo Nordisk Fonden

Medical Research Council

Schmidt Family Foundation

National Institute for Health Research Health Protection Research Unit

Danmarks Grundforskningsfond

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation

Reference59 articles.

1. Aldis GK, Roberts MG (2005) An integral equation model for the control of a smallpox outbreak. Math Biosci 195(1):1–22. https://doi.org/10.1016/j.mbs.2005.01.006

2. Allen LJS (2017) A primer on stochastic epidemic models: formulation, numerical simulation, and analysis. Infect Dis Model 2(2):128–142

3. Bartoszynski R (1967) Branching processes and the theory of epidemics. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1965-1966, University of California Press, Berkeley, pp 259-269

4. Bellman R, Harris T (1952) On age-dependent binary branching processes. Ann Math 55:280–295. https://doi.org/10.2307/1969779

5. Bellman R, Harris TE (1948) On the theory of age-dependent stochastic branching processes. Proc Natl Acad Sci USA 34:601–604. https://doi.org/10.1073/pnas.34.12.601

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3