Traveling waves of an FKPP-type model for self-organized growth

Author:

Kreten FlorianORCID

Abstract

AbstractWe consider a reaction–diffusion system of densities of two types of particles, introduced by Hannezo et al. (Cell 171(1):242–255.e27, 2017). It is a simple model for a growth process: active, branching particles form the growing boundary layer of an otherwise static tissue, represented by inactive particles. The active particles diffuse, branch and become irreversibly inactive upon collision with a particle of arbitrary type. In absence of active particles, this system is in a steady state, without any a priori restriction on the amount of remaining inactive particles. Thus, while related to the well-studied FKPP-equation, this system features a game-changing continuum of steady state solutions, where each corresponds to a possible outcome of the growth process. However, simulations indicate that this system self-organizes: traveling fronts with fixed shape arise under a wide range of initial data. In the present work, we describe all positive and bounded traveling wave solutions, and obtain necessary and sufficient conditions for their existence. We find a surprisingly simple symmetry in the pairs of steady states which are joined via heteroclinic wave orbits. Our approach is constructive: we first prove the existence of almost constant solutions and then extend our results via a continuity argument along the continuum of limiting points.

Funder

deutsche forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3