On inferring evolutionary stability in finite populations using infinite population models

Author:

Molina ChaiORCID,Earn David J. D.ORCID

Abstract

AbstractModels of evolution by natural selection often make the simplifying assumption that populations are infinitely large. In this infinite population limit, rare mutations that are selected against always go extinct, whereas in finite populations they can persist and even reach fixation. Nevertheless, for mutations of arbitrarily small phenotypic effect, it is widely believed that in sufficiently large populations, if selection opposes the invasion of rare mutants, then it also opposes their fixation. Here, we identify circumstances under which infinite-population models do or do not accurately predict evolutionary outcomes in large, finite populations. We show that there is no population size above which considering only invasion generally suffices: for any finite population size, there are situations in which selection opposes the invasion of mutations of arbitrarily small effect, but favours their fixation. This is not an unlikely limiting case; it can occur when fitness is a smooth function of the evolving trait, and when the selection process is biologically sensible. Nevertheless, there are circumstances under which opposition of invasion does imply opposition of fixation: in fact, for the $$n$$ n -player snowdrift game (a common model of cooperation) we identify sufficient conditions under which selection against rare mutants of small effect precludes their fixation—in sufficiently large populations—for any selection process. We also find conditions under which—no matter how large the population—the trait that fixes depends on the selection process, which is important because any particular selection process is only an approximation of reality.

Funder

International Institute for Applied Systems Analysis

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of group size and population size on the evolutionary stability of cooperation;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-02

2. Evolution of cooperation with joint liability;Journal of The Royal Society Interface;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3