Parsimony and the rank of a flattening matrix

Author:

Snyman Jandre,Fox Colin,Bryant DavidORCID

Abstract

AbstractThe standard models of sequence evolution on a tree determine probabilities for every character or site pattern. A flattening is an arrangement of these probabilities into a matrix, with rows corresponding to all possible site patterns for one setAof taxa and columns corresponding to all site patterns for another setBof taxa. Flattenings have been used to prove difficult results relating to phylogenetic invariants and consistency and also form the basis of several methods of phylogenetic inference. We prove that the rank of the flattening equals$$r^{\nu _T(A|B)}$$rνT(A|B), whereris the number of states and$$\nu _T(A|B)$$νT(A|B)is the minimum size of a vertex cut separatingAfromB. WhenTis binary the rank of the flattening equals$$r^{\ell _T(A|B)}$$rT(A|B)where$$\ell _T(A|B)$$T(A|B)equals the parsimony length of the binary character separatingAandB. We provide a direct proof that requires little more than undergraduate algebra, but note that the formula could also be derived from work by Casanellas and Fernández-Sánchez (2011) on phylogenetic invariants.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation

Reference31 articles.

1. Allen BL, Steel M (2001) Subtree transfer operations and their induced metrics on evolutionary trees. Ann Comb 5(1):1–15

2. Allman ES, Jarvis PD, Rhodes JA, Sumner JG (2013) Tensor rank, invariants, inequalities, and applications. SIAM J Matrix Anal Appl 34(3):1014–1045

3. Allman ES, Kubatko LS, Rhodes JA (2017) Split Scores: a tool to quantify phylogenetic signal in genome-scale data. Syst Biol 66(4):620–636

4. Allman ES, Rhodes (2005) Phylogenetic invariants. In: Gascuel Olivier (ed) Mathematics of Evolution and Phylogeny. Oxford University Press, Oxford, pp 108–146

5. Allman ES, Rhodes JA (2003) Phylogenetic invariants for the general markov model of sequence mutation. Math Biosci 186(2):113–144

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Algebraic Approach to Time-Reversible Evolutionary Models;SIAM Journal on Applied Mathematics;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3