A group theoretic approach to model comparison with simplicial representations

Author:

Vittadello Sean T.ORCID,Stumpf Michael P. H.ORCID

Abstract

AbstractThe complexity of biological systems, and the increasingly large amount of associated experimental data, necessitates that we develop mathematical models to further our understanding of these systems. Because biological systems are generally not well understood, most mathematical models of these systems are based on experimental data, resulting in a seemingly heterogeneous collection of models that ostensibly represent the same system. To understand the system we therefore need to understand how the different models are related to each other, with a view to obtaining a unified mathematical description. This goal is complicated by the fact that a number of distinct mathematical formalisms may be employed to represent the same system, making direct comparison of the models very difficult. A methodology for comparing mathematical models based on their underlying conceptual structure is therefore required. In previous work we developed an appropriate framework for model comparison where we represent models, specifically the conceptual structure of the models, as labelled simplicial complexes and compare them with the two general methodologies of comparison by distance and comparison by equivalence. In this article we continue the development of our model comparison methodology in two directions. First, we present a rigorous and automatable methodology for the core process of comparison by equivalence, namely determining the vertices in a simplicial representation, corresponding to model components, that are conceptually related and the identification of these vertices via simplicial operations. Our methodology is based on considerations of vertex symmetry in the simplicial representation, for which we develop the required mathematical theory of group actions on simplicial complexes. This methodology greatly simplifies and expedites the process of determining model equivalence. Second, we provide an alternative mathematical framework for our model-comparison methodology by representing models as groups, which allows for the direct application of group-theoretic techniques within our model-comparison methodology.

Funder

University of Melbourne

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3