Populations in environments with a soft carrying capacity are eventually extinct

Author:

Jagers PeterORCID,Zuyev SergeiORCID

Abstract

AbstractConsider a population whose size changes stepwise by its members reproducing or dying (disappearing), but is otherwise quite general. Denote the initial (non-random) size by $$Z_0$$ Z 0 and the size of the nth change by $$C_n$$ C n , $$n= 1, 2, \ldots $$ n = 1 , 2 , . Population sizes hence develop successively as $$Z_1=Z_0+C_1,\ Z_2=Z_1+C_2$$ Z 1 = Z 0 + C 1 , Z 2 = Z 1 + C 2 and so on, indefinitely or until there are no further size changes, due to extinction. Extinction is thus assumed final, so that $$Z_n=0$$ Z n = 0 implies that $$Z_{n+1}=0$$ Z n + 1 = 0 , without there being any other finite absorbing class of population sizes. We make no assumptions about the time durations between the successive changes. In the real world, or more specific models, those may be of varying length, depending upon individual life span distributions and their interdependencies, the age-distribution at hand and intervening circumstances. We could consider toy models of Galton–Watson type generation counting or of the birth-and-death type, with one individual acting per change, until extinction, or the most general multitype CMJ branching processes with, say, population size dependence of reproduction. Changes may have quite varying distributions. The basic assumption is that there is a carrying capacity, i.e. a non-negative number K such that the conditional expectation of the change, given the complete past history, is non-positive whenever the population exceeds the carrying capacity. Further, to avoid unnecessary technicalities, we assume that the change $$C_n$$ C n equals -1 (one individual dying) with a conditional (given the past) probability uniformly bounded away from 0. It is a simple and not very restrictive way to avoid parity phenomena, it is related to irreducibility in Markov settings. The straightforward, but in contents and implications far-reaching, consequence is that all such populations must die out. Mathematically, it follows by a supermartingale convergence property and positive probability of reaching the absorbing extinction state.

Funder

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3