Abstract
AbstractTheory predicts that the additive genetic covariance ($$\textbf{G}$$
G
) matrix determines a population’s short-term (in)ability to respond to directional selection—evolvability in the Hansen–Houle sense—which is typically quantified and compared via certain scalar indices called evolvability measures. Often, interest is in obtaining the averages of these measures across all possible selection gradients, but explicit formulae for most of these average measures have not been known. Previous authors relied either on approximations by the delta method, whose accuracy is generally unknown, or Monte Carlo evaluations (including the random skewers analysis), which necessarily involve random fluctuations. This study presents new, exact expressions for the average conditional evolvability, average autonomy, average respondability, average flexibility, average response difference, and average response correlation, utilizing their mathematical structures as ratios of quadratic forms. The new expressions are infinite series involving top-order zonal and invariant polynomials of matrix arguments, and can be numerically evaluated as their partial sums with, for some measures, known error bounds. Whenever these partial sums numerically converge within reasonable computational time and memory, they will replace the previous approximate methods. In addition, new expressions are derived for the average measures under a general normal distribution for the selection gradient, extending the applicability of these measures into a substantially broader class of selection regimes.
Funder
Royal Society
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献