An algebraic characterization of self-generating chemical reaction networks using semigroup models

Author:

Loutchko Dimitri

Abstract

AbstractThe ability of a chemical reaction network to generate itself by catalyzed reactions from constantly present environmental food sources is considered a fundamental property in origin-of-life research. Based on Kaufmann’s autocatalytic sets, Hordijk and Steel have constructed the versatile formalism of catalytic reaction systems (CRS) to model and to analyze such self-generating networks, which they named reflexively autocatalytic and food-generated. Recently, it was established that the subsequent and simultaenous catalytic functions of the chemicals of a CRS give rise to an algebraic structure, termed a semigroup model. The semigroup model allows to naturally consider the function of any subset of chemicals on the whole CRS. This gives rise to a generative dynamics by iteratively applying the function of a subset to the externally supplied food set. The fixed point of this dynamics yields the maximal self-generating set of chemicals. Moreover, the set of all functionally closed self-generating sets of chemicals is discussed and a structure theorem for this set is proven. It is also shown that a CRS which contains self-generating sets of chemicals cannot have a nilpotent semigroup model and thus a useful link to the combinatorial theory of finite semigroups is established. The main technical tool introduced and utilized in this work is the representation of the semigroup elements as decorated rooted trees, allowing to translate the generation of chemicals from a given set of resources into the semigroup language.

Funder

JSPS KAKENHI

JST CREST

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Agricultural and Biological Sciences (miscellaneous),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3