Author:
Bifet Albert,Gavaldà Ricard
Publisher
Springer Berlin Heidelberg
Reference13 articles.
1. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proc. 21st ACM Symposium on Principles of Database Systems (2002)
2. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. Technical report, Universitat Politècnica de Catalunya (2006), Available from: http://www.lsi.upc.edu/~abifet
3. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows. SIAM Journal on Computing 14(1), 27–45 (2002)
4. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In: SBIA Brazilian Symposium on Artificial Intelligence, pp. 286–295 (2004)
5. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: 7th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, San Francisco, CA, pp. 97–106. ACM Press, New York (2001)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EdgeCluster: A Resource-Aware Evolving Clustering for Streaming Data;2024 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS);2024-05-23
2. A Novel Approach of Adpative Window 2 Technique and Kalman Filter- “KalADWIN2” for Detection of Concept Drift;Advances in Visual Informatics;2023-10-20
3. NCT:noise-control multi-object tracking;Complex & Intelligent Systems;2023-01-03
4. Tracking changes using Kullback-Leibler divergence for the continual learning;2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2022-10-09
5. Kalman Filtering for Learning with Evolving Data Streams;2021 IEEE International Conference on Big Data (Big Data);2021-12-15