Organisation und Algorithmus

Author:

Büchner Stefanie,Dosdall Henrik

Abstract

ZusammenfassungDer vorliegende Beitrag analysiert, wie Organisationen Algorithmen, die wir als digitale Beobachtungsformate verstehen, mit Handlungsfähigkeit ausstatten und damit actionable machen. Das zentrale Argument lautet, dass die soziale Relevanz digitaler Beobachtungsformate sich daraus ergibt, dass und wie sie in organisationale Entscheidungsarchitekturen eingebettet sind. Diesen Zusammenhang illustrieren wir am Beispiel des österreichischen Arbeitsmarktservice (AMS), der 2018 einen Algorithmus einführte, um die Integrationschancen arbeitsuchender Personen zu bewerten. Der AMS steht dabei stellvertretend für aktuelle Bestrebungen vieler Organisationen, algorithmische Systeme einzusetzen, um knappe öffentliche Ressourcen vermeintlich effizienter zu distribuieren. Um zu rekonstruieren, wie dies geschieht, zeigen wir, welche Operationen des Kategorisierens, Vergleichens und Bewertens das algorithmische Modell vollzieht. Darauf aufbauend demonstrieren wir, wie das algorithmische Modell in die organisationale Entscheidungsarchitektur eingebunden ist. Erst durch diese Einbindung – die Möglichkeit, Unterschiede für andere, relativ stabil erzeugte Entscheidungen zu machen – entfaltet das digitale Beobachtungsformat soziale Relevanz. Abschließend argumentieren wir, dass algorithmische Modelle, wie sie am Fall des AMS beobachtet werden können, dazu tendieren, sich in Organisationen zu stabilisieren. Dies begründen wir damit, dass die organisationalen Lernchancen im Umgang mit dem Algorithmus dadurch reduziert sind, dass dieser in einem Bereich zum Einsatz kommt, der durch Technologiedefizit und koproduktive Leistungserstellung geprägt ist.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Sociology and Political Science,Social Psychology

Reference83 articles.

1. Abbott, Andrew. 2014. The Problem of Excess. Sociological Theory 32:1–26.

2. Amoore, Louise, und Volha Piotukh. 2015. Life beyond big Data. Governing with little Analytics. Economy and Society 44:341–366.

3. Apelt, Maja und Veronika Tacke (Hrsg.). 2012. Handbuch Organisationstypen. Wiesbaden: VS Verlag.

4. Argote, Linda. 2013. Organizational Learning. Creating, Retaining and Transferring Knowledge. 2. Aufl. New York: Springer.

5. Argyris, Chris. 1976. Single-Loop and Double-Loop Models in Research on Decision Making. Administrative Science Quarterly 21:363–375.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3