Lucky strike: testing the utility of manganese dioxide powder in Neandertal percussive fire making

Author:

Sorensen Andrew C.ORCID

Abstract

AbstractLate Middle Palaeolithic Neandertals in France are known to have engaged in the collection and grinding of black minerals rich in manganese dioxide (MnO2), generally presumed for symbolic use as powdered pigments. However, lab-based experiments conducted by Heyes and colleagues (Sci Rep 6: 22159, 2016) have shown that the addition of powdered MnO2 to wood turnings both reduces the temperature required for combustion by ca. 80–180 °C and significantly increases the rate of combustion. This special pyrotechnic property of powdered MnO2 may have been observed and leveraged by Neandertals to aid in fire making—a technology known to Neandertals in this region by at least 50,000 years ago. To test this idea, a series of actualistic fire-making experiments were performed to determine the practical applicability of MnO2 as a tinder-enhancing additive. The flint-and-pyrite percussive fire-making method was employed to produce sparks that were directed onto eight different types of tinder common to temperate Northwest Europe to determine if and to what degree the addition of MnO2 powder improved their ability to capture sparks that then propagate into glowing embers. The results show that MnO2 does indeed considerably improve the ignition efficiency of tinder material over untreated tinder, both in terms of the point of first ignition and the total number of ignitions achieved. It was observed, however, that the incidental addition of pyrite dust onto a tinder over the course of an experiment also appeared to improve its ability to capture sparks. Supplemental experiments using tinder pre-mixed with powdered pyrite confirmed this hypothesis, suggesting pyrite powder similarly expedites fire production. While this finding may raise questions regarding the need for collecting MnO2 for this purpose, its potential utility may lie in (1) its relative softness compared to pyrite, making it much easier to grind or scrape into powder, and (2) the greater potential for MnO2-bearing deposits to yield larger quantities of usable raw material compared to pyrite-bearing outcrops, making it relatively more abundant in some areas. Thus, when available, it is clear that adding MnO2 to tinder would have noticeably reduced the time and energy required to produce fire, making it a potentially novel Neandertal innovation complementary to the fire-making process.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3