Cavity detection using a pseudo-3D electric resistivity tomography at the Palaeolithic/Neolithic site of Scaloria Cave, Apulia, Italy: integrated assessment of synthetic and field data sets

Author:

Maerker M.ORCID,Rellini I.ORCID,Mucerino L.,Torrese P.ORCID

Abstract

AbstractA pseudo-3D electrical resistivity tomography (ERT) survey has been carried out to detect cavities at the Neolithic/Palaeolithic site of Grotta Scaloria, close to Manfredonia, Apulia, Italy. Scaloria Cave has a rich history of archaeological research of more than 80 years and is one of the most important Neolithic complexes in the Mediterranean. Synthetic data modelling allowed to check the adequacy of the geophysical method and to develop a proper experimental setup at the survey design stage. Indeed, the results of the field data inversion revealed high resistivity anomalies which can be related to cavities and provided a good definition of the main geological structures and boundaries. Moreover, the results suggest that unknown and speleological unexplored cavities are still present at the Scaloria Cave study site. These findings may provide further insights on pseudo-3D ERT applicability, particularly for cavity detection. Furthermore, the approach used in this study yields fruitful information for further archaeological survey design and for the interpretation of ERT investigations targeting similar geological features and structures.

Funder

Heidelberger Akademie der Wissenschaften

Università degli Studi di Genova

Università degli Studi di Pavia

Publisher

Springer Science and Business Media LLC

Subject

Archeology,Anthropology,Archeology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3