Use of GIS and machine learning to predict disease in shrimp farmed on the east coast of the Mekong Delta, Vietnam

Author:

Khiem Nguyen MinhORCID,Takahashi Yuki,Yasuma Hiroki,Oanh Dang Thi Hoang,Hai Tran Ngoc,Ut Vu Ngoc,Kimura Nobuo

Abstract

AbstractDiseases in shrimp farms in the Mekong Delta of Vietnam cause significant crop losses and are therefore of great concern to producers. Once a pond becomes infected, it is difficult to prevent spread of the disease to nearby shrimp farming areas. Thus, predicting the occurrence of disease is an essential part of reducing the risk for shrimp farmers. In this study, we applied an integrated geographic information system and machine learning system to predict three serious diseases of shrimp, namely, acute hepatopancreatic necrosis, white spot syndrome disease, and Enterocytozoon hepatopenaei infection, based on data collected from shrimp farms in the Tra Vinh, Bac Lieu, Soc Trang, and Ca Mau provinces of Vietnam. We first constructed a map showing the distribution of these diseases using the locations of affected farms, and then we conducted spatial analysis to acquire the geographical features of the affected locations. This latter information was combined with environmental factors and clinical signs to form the set of independent variables affecting the outbreak of diseases. The neural network model outperformed the logistic regression, random forest, and gradient boosting methods in terms of predicting infection to estimate the probability of disease occurrence in farmed areas. Acute hepatopancreatic necrosis disease infected farms downstream of the Co Chien and Hau Rivers of Tra Vinh and west of Ca Mau. Enterocytozoon hepatopenaei infection is distributed in Soc Trang Province, while white spot syndrome virus has spread to the coastal districts of Soc Trang and Bac Lieu Provinces, where it is highly associated to water from a complex canal system.

Funder

Can Tho University Improvement Project VN14-P6

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3