Author:
Matsui Ryo,Yaginuma Suguru,Naito Taketo,Nakata Kazuhide
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Wieschollek, P., Wang, O., Sorkine-Hornung, A., & Lensch, H. (2016). Efficient large-scale approximate nearest neighbor search on the GPU. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2027–2035.
2. Huang, J.-T., Sharma, A., Sun, S., Xia, L., Zhang, D., Pronin, P., Padmanabhan, J., Ottaviano, G., Yang, L. (2020). Embedding-based retrieval in facebook search. In: KDD ’20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2553–2561.
3. Grbovic, M., & Cheng, H. (2018). Real-time personalization using embeddings for search ranking at airbnb. In: KDD ’18: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 311–320.
4. Guo, D., Xu, J., Zhang, J., Xu, M., Cui, Y., & He, X. (2017). User relationship strength modeling for friend recommendation on instagram. Neurocomputing, 239, 9–18.
5. Brovman, Y. M., Jacob, M., Srinivasan, N., Neola, S., Galron, D., Snyder, R., & Wang, P. (2016). Optimizing similar item recommendations in a semi-structured marketplace to maximize conversion. In: RecSys ’16: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 199–202.