CYP24A1 Involvement in Inflammatory Factor Regulation Occurs via the Wnt Signaling Pathway

Author:

Chen Xue-qi,Mao Jia-yu,Wang Chun-saier,Li Wen-bin,Han Tao-tao,Lv Ke,Li Jing-nan

Abstract

Abstract Objective While the upregulation of cytochrome P450 family 24 subfamily A member 1 (CYP24A1) gene expression has been reported in colon cancer, its role in tumorigenesis remains largely unknown. In this study, we aimed to investigate the involvement of CYP24A1 in Wnt pathway regulation via the nuclear factor kappa B (NF-κB) pathway. Methods The human colon cancer cell lines HCT-116 and Caco-2 were subjected to stimulation with interleukin-6 (IL-6) as well as tumor necrosis factor alpha (TNF-α), with subsequent treatment using the NF-κB pathway-specific inhibitor ammonium pyrrolidinedithiocarbamate (PDTC). Furthermore, CYP24A1 expression was subjected to knockdown via the use of small interfering RNA (siRNA). Subsequently, NF-κB pathway activation was determined by an electrophoretic mobility shift assay, and the transcriptional activity of β-catenin was determined by a dual-luciferase reporter assay. A mouse ulcerative colitis (UC)-associated carcinogenesis model was established, wherein TNF-α and the NF-κB pathway were blocked by anti-TNF-α monoclonal antibody and NF-κB antisense oligonucleotides, respectively. Then the tumor size and protein level of CYP24A1 were determined. Results IL-6 and TNF-α upregulated CYP24A1 expression and activated the NF-κB pathway in colon cancer cells. PDTC significantly inhibited this increase in CYP24A1 expression. Additionally, knockdown of CYP24A1 expression by siRNA could partially antagonize Wnt pathway activation. Upregulated CYP24A1 expression was observed in the colonic epithelial cells of UC-associated carcinoma mouse models. Anti-TNF-α monoclonal antibody and NF-κB antisense oligonucleotides decreased the tumor size and suppressed CYP24A1 expression. Conclusion Taken together, this study suggests that inflammatory factors may increase CYP24A1 expression via NF-κB pathway activation, which in turn stimulates Wnt signaling.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3