A Novel ATM Antisense Transcript ATM-AS Positively Regulates ATM Expression in Normal and Breast Cancer Cells

Author:

Cheng He,Zhang Er-shao,Shi Xiao,Cao Ping-ping,Pan Bei-jing,Si Xin-xin,Liu Yue,Yang Nan,Chu Ying,Wang Xu-chun,Han Xiao,Zhang Zhi-hong,Sun Yu-jie

Abstract

Abstract Objective The ataxia telangiectasia mutated (ATM) gene is a master regulator in cellular DNA damage response. The dysregulation of ATM expression is frequent in breast cancer, and is known to be involved in the carcinogenesis and prognosis of cancer. However, the underlying mechanism remains unclear. The bioinformatic analysis predicted a potential antisense transcript ATM-antisense (AS) from the opposite strand of the ATM gene. The purpose of this study was to identify ATM-AS and investigate the possible effect of ATM-AS on the ATM gene regulation. Methods Single strand-specific RT-PCR was performed to verify the predicted antisense transcript ATM-AS within the ATM gene locus. qRT-PCR and Western blotting were used to detect the expression levels of ATM-AS and ATM in normal and breast cancer cell lines as well as in tissue samples. Luciferase reporter gene assays, biological mass spectrometry, ChIP-qPCR and RIP were used to explore the function of ATM-AS in regulating the ATM expression. Immunofluorescence and host-cell reactivation (HCR) assay were performed to evaluate the biological significance of ATM-AS in ATM-mediated DNA damage repair. Breast cancer tissue samples were used for evaluating the correlation of the ATM-AS level with the ATM expression as well as prognosis of the patients. Results The ATM-AS significantly upregulated the ATM gene activity by recruiting KAT5 histone acetyltransferase to the gene promoter. The reduced ATM-AS level led to the abnormal downregulation of ATM expression, and impaired the ATM-mediated DNA damage repair in normal breast cells in vitro. The ATM-AS level was positively correlated with the ATM expression in the examined breast cancer tissue samples, and the patient prognosis. Conclusion The present study demonstrated that ATM-AS, an antisense transcript located within the ATM gene body, is an essential positive regulator of ATM expression, and functions by mediating the binding of KAT5 to the ATM promoter. These findings uncover the novel mechanism underlying the dysregulation of the ATM gene in breast cancer, and enrich our understanding of how an antisense transcript regulates its host gene.

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3