Abstract
Abstract
Objectives
The aim of the present study was to create and test an automatic system for assessing the technical quality of positioning in periapical radiography of the maxillary canines using deep learning classification and segmentation techniques.
Methods
We created and tested two deep learning systems using 500 periapical radiographs (250 each of good- and bad-quality images). We assigned 350, 70, and 80 images as the training, validation, and test datasets, respectively. The learning model of system 1 was created with only the classification process, whereas system 2 consisted of both the segmentation and classification models. In each model, 500 epochs of training were performed using AlexNet and U-net for classification and segmentation, respectively. The segmentation results were evaluated by the intersection over union method, with values of 0.6 or more considered as success. The classification results were compared between the two systems.
Results
The segmentation performance of system 2 was recall, precision, and F measure of 0.937, 0.961, and 0.949, respectively. System 2 showed better classification performance values than those obtained by system 1. The area under the receiver operating characteristic curve values differed significantly between system 1 (0.649) and system 2 (0.927).
Conclusions
The deep learning systems we created appeared to have potential benefits in evaluation of the technical positioning quality of periapical radiographs through the use of segmentation and classification functions.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Dentistry (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献