Distributed Energy Systems and Energy Communities Under Negotiation

Author:

Kojonsaari Anna-RiikkaORCID,Palm JennyORCID

Abstract

AbstractNew decentralized energy-generation technologies have turned economies of scale upside down while becoming more economically viable. At the same time, the increased penetration of information technologies has led to new opportunities to manage infrastructure in a less hierarchical, more flexible way. Together with citizen demands for control over energy, these two converging trends has put energy communities (ECs) on the agenda, potentially advancing the transition towards more sustainable energy systems, despite hindrances encountered on the way. This paper presents a case study of the planning process of a sustainable city district in Sweden, using participatory observations and interviews conducted with included stakeholders. We analyse how the included stakeholders has reasoned about establishing a sustainable energy system in the area, including a microgrid. The discussions on a microgrid comprised two parallel discourses, coexisting but seldomly explicitly confronted. The distribution system operator in the area promoted a distributed energy system (DES) solution, while the property developers opted for a microgrid organized more as a citizen energy community (CEC). We discuss why the CEC proponents so far has lost the battle of creating a community owned smart grid. We conclude that the different models, a DES and a CEC, comprise different values and an increased focus on energy communities could shift the transition pathway towards a more decentralized system involving other prioritise than just economical.

Funder

Familjen Kamprads Stiftelse

The Horizon Project NEWCOMERS

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Economics and Econometrics,Energy (miscellaneous),Renewable Energy, Sustainability and the Environment

Reference53 articles.

1. Pinson P, Baroche T, Moret F, Sousa T, Sorin E, You S (2017) The emergence of consumer-centric electricity markets. Distrib Utilization 34(12):27–31

2. European Commission (2019) Clean energy for all Europeans. Publications office of the European Union https://opeuropaeu/en/publication-detail/-/publication/b4e46873-7528-11e9-9f05-01aa75ed71a1. Accessed 20 September 2020

3. European Parliament and Council of the European Union (2018) Directive (EU) 2018/2001 of the European Parliament and of the council of 11 December 2018 on the promotion of the use of energy from renewable sources, OJ L 328, 21.12.2018

4. Bolton R, Hannon M (2016) Governing sustainability transitions through business model innovation: towards a systems understanding. Res Policy 45(9):1731–1742. https://doi.org/10.1016/j.respol.2016.05.003

5. Smith A, Voß J-P, Grin J (2010) Innovation studies and sustainability transitions: the allure of the multi-level perspective and its challenges. Res Policy 39(4):435–448. https://doi.org/10.1016/j.respol.2010.01.023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3