1. J. B. Rosser,Theory and Application of $$\mathop \smallint \limits_0^z e^{ - x^2 } dxand\mathop \smallint \limits_0^z e^{ - p^2 y^2 } dy\mathop \smallint \limits_0^y e^{ - x^2 } dx$$ , Rep. OSRD 5861 prepared by Allegany Ballistics Laboratory, Contr. OEMsr-273 1945.
2. P. C. Clemmow andC. M. Munford, A Table of $$\sqrt {\left( {\frac{1}{2}\pi } \right)} e^{\frac{1}{2}i\pi x^2 } \mathop \smallint \limits_\varrho ^\infty e^{ - \frac{1}{2}i\pi x^2 } dx$$ for Complex Values of x, Phil. Trans. [A]245, 189 (1952).
3. W. Skwirzynski,Evaluation of erfc (z), Marconi's Wireless Telegraph Co., Res. Division, Rep. RD. 992, Great Baddow, Essex, 1952 (Unpublished).
4. W. F. Cahill,A Short Table of the Error Function of Complex Arguments, NBS Project 1102-10-1104, Report 3034, Washington, 1953.
5. T. Laible,Höhenkarte des Fehlerintegrals, ZAMP2, 484 (1951).