Abstract
AbstractDiscrete element calculations of the top-coal drawing process for different gangue-coal density ratios were conducted to investigate the effect of the gangue-coal density ratio on the drawing mechanism in longwall top-coal caving. The effects were analyzed for the drawing body, the top-coal boundary, and the recovery of top coal. The results show that for increasing density ratio, the initial drawing body on the goaf side is farther away from the drawing support and its width and volume gradually increase. The upper part of the sickle-shaped drawing body extends near the initial drawing body with increasing density ratio in the normal cycling stage, and the distance from the drawing body to the initial drawing body is its maximum width. The larger the density ratio, the smaller the height of the top coal above the goaf at the end of the initial drawing process. The height of the top-coal boundary decreases with increasing density ratio, until it reaches a limit. In a normal cycle, due to hysteretic development, the top-coal boundary moves toward the goaf until the density ratio is approximately 2.0, which is consistent with the physical experiment results. Finally, increasing the advance length of the working face is beneficial for increasing the overall recovery of top coal.
Funder
the Natural Science Foundation of China
the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining
the Fundamental Research Funds for the Central Universities
the Research Fund of Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education
Publisher
Springer Science and Business Media LLC
Subject
Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献