Numerical and theoretical investigations of the effect of the gangue-coal density ratio on the drawing mechanism in longwall top-coal caving

Author:

Zhang Jinwang,Cheng Dongliang,Yang Yinchao,Wei WeijieORCID,Li Zhaolong,Song Zhengyang

Abstract

AbstractDiscrete element calculations of the top-coal drawing process for different gangue-coal density ratios were conducted to investigate the effect of the gangue-coal density ratio on the drawing mechanism in longwall top-coal caving. The effects were analyzed for the drawing body, the top-coal boundary, and the recovery of top coal. The results show that for increasing density ratio, the initial drawing body on the goaf side is farther away from the drawing support and its width and volume gradually increase. The upper part of the sickle-shaped drawing body extends near the initial drawing body with increasing density ratio in the normal cycling stage, and the distance from the drawing body to the initial drawing body is its maximum width. The larger the density ratio, the smaller the height of the top coal above the goaf at the end of the initial drawing process. The height of the top-coal boundary decreases with increasing density ratio, until it reaches a limit. In a normal cycle, due to hysteretic development, the top-coal boundary moves toward the goaf until the density ratio is approximately 2.0, which is consistent with the physical experiment results. Finally, increasing the advance length of the working face is beneficial for increasing the overall recovery of top coal.

Funder

the Natural Science Foundation of China

the Research Fund of the State Key Laboratory of Coal Resources and Safe Mining

the Fundamental Research Funds for the Central Universities

the Research Fund of Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3